

Emco Dynatorq Pvt. Ltd.

Operating Instructions
Servicing Instructions Manual

EMCO – Simplatroll Spring Applied Fail Safe Brake Weather Proof Enclosure Type WP.458. [] (Rev.00 / 01.03.16)

Contents

1.	Pre	eface and general information
	1.1	How to use these operating instructions
		1.1.1 Terminology used
	1.2	Scope of delivery
	1.3	Emco Dynatorq spring Applied Brake
		1.3.1 Manufacturer
		1.3.2 Packaging sticker
		1.3.3 Nameplate
		1.3.4 Type code
		1.3.5 Application as directed
		1.3.6 Legal regulations
2.	Safety	information
	2.1	Personnel responsible for safety
	2.2	General safety information
	2.3	Layout of the safety information
3.	Techn	ical data
	3.1	Product Description
		3.1.1 General
		3.1.2 Banking
		3.1.3 Releasing
		3.1.4 Brake-torque reduction
		3.1.5 Option: Microswitch
	3.2	Rated data
	3.3	Operating times
	3.4	Torque v/s Speed data
	3.5	Rated data
4.		ation
	4.1	Preparation
	4.2	Assembly
		4.2.1 Assembly of mounting flange
		4.2.2 Mounting of hub
		4.2.3 Assembly of Rotor
		4.2.4 Assembly of Stator
		4.2.5 Assembly of manual release
		4.2.6 Work instruction to adjust micro-switch for monitoring brake release
		(standard sizes 06 to 50)
	4.3	Electrical connection
	4.4	Microswitch Connection diagram for release / wear monitoring
5.		and operation
•	5.1	Operational test
	0	5.1.1 Release/ voltage check
		5.1.2 Manual release
6.	Mainte	nance/ repair
٠.	6.1	Inspection intervals
	6.2	Inspection
	0.2	6.2.1 Rotor thickness
		6.2.2 Air gap
		6.2.3 Release/voltage
	6.3	Maintenance
	0.0	Maintonario

Contents

6.3.2 Replacement of rotor	8.	Do's a	ınd Don'ts
6.3.2 Replacement of rotor	7.	Troubl	eshooting and fault elimination
		6.4	6.3.1 Readjustment of air gap 6.3.2 Replacement of rotor 6.3.3 Replacement of armature plate Spare parts lists 6.4.1 Spare-parts list for sizes 06 to 50

1 Preface and general information

1.1 How to use these operating instructions

- These operating instructions are intended for safety-relevant operations on and with the spring-applied break with electromagnetic release. They contain safety instructions which must be observed.
- All personnel working on and with the spring-applied brake with electromagnetic release must have the Operating instructions available and observe the information and notes relevant for them.
- The operating instructions must always be complete and perfectly readable.

1.1.1 Terminology used

Brake

For "spring –applied brake with electromagnetic release" the term "Spring-applied Brake" will be used in the following text.

Drive system

For drive systems with spring-applied brake with electromagnetic release and other drive components the term "drive system" will be used in following text.

1.2 Scope of delivery

- The drive system are combined individually according to a modular design. The scope of delivery can be obtained form the relevant papers.
- After receipt of the delivery, check immediately whether it corresponds to the accompanying papers. Emco Dynatorq dose not grant any warranty for subsequent claims. Claim for any
 - Visible transport damage immediately to the forwarder.
 Visible deficiencies/incompleteness immediately to the responsible Emco-Dynatorq engineer/agency.

1.3 Emco Dynatorq DC spring applied fail safe brake

1.3.1 Manufacturer

Regd. & Marketing office:

EMCO DYNATORQ PVT. LTD.

1ST Floor, Sita Mauli,

above Bank of Maharashtra

Panch Pakhadi, Thane (W)-400 602

Phone: 022 - 25405490 / 25452244

Fax: 022-25452233

E-mail: mktg@emco-dynatorq.in Website: www.emco-dynatorq.in

UNIT - I

Shivam Industrial Estate, Bldg. No. 3,

Gala No. 12A & 12B Tungareshwar Phata Ro

Sativali, Vasai (E), Thane – 401208 Phone: (0) 250 - 2480489 / 2480490

Fax: (0) 250 - 2481086

E-mail: vasai@emco-dynatorq.in

<u>UNIT – II</u>

<u>UNIT – III</u>

1002 – 1003, GIDC Estate, Waghodia, Gala No. 6A & 8,

Dist. Baroda – 391760, Gujarat Kedarnath Bldg. Tungareshwar Indi. Estate,

Phone : (0) 2668 – 262186 / 263089 / 26218 Sativali, Vasai (E) Fax: (0) 2668 – 262180 Phone : (0) 250 – 2480178 / 2480921

Fax: (0) 2668 – 262180 E-mail: dynatorq@gmail.com

UNIT - IV

Plot No. 1426,

GIDC Estate, Waghodia,

Dist. Baroda – 391760, Gujarat Phone : (0) 2668 – 290761 1.3.2 Packaging Sticker

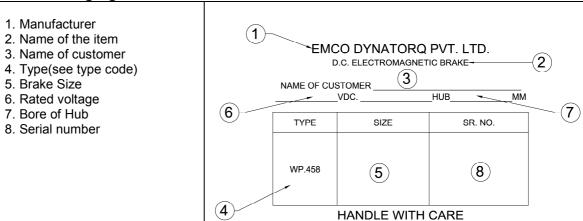


Fig.1: Packaging sticker

1.3.3 Nameplate

 Brand Name 2. Product Description EMCO DYNATORQ PVT. LTD: (EL) 3. IP Code (1) FAIL SAFE BRAKE WITH 4. Rated voltage WEATHER PROOF ENCLOSURE 5. Bore Hub 2 IP **▼** TYPE :- WP.458. 6. Serial Number 3 7. Power VOLTAGE WATTS HUB BORE SR. No. Tel:- 022-2545 2244 E-mail: mktg@emco-dynatorq.in 4 (6) (5) $\widehat{\mathbf{7}}$

Fig.2: Nameplate

1.3.4 Type code (for complete brake assembly only)

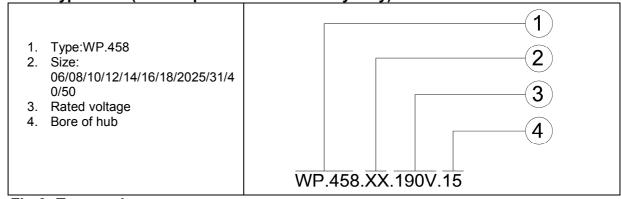


Fig.3: Type code

PREFACE AND GENERAL INFORMATION

1.3.5 Application as directed

- Emco- Dynatorq Spring Applied Fail Safe Brake
 - Are intended for use in machinery and system.
 - Must only be used for the purpose ordered and confirmed.
 - Must only be operated under the ambient conditions prescribed in these Operating instructions.
 - Must not be operated beyond their corresponding power limit.

Any other use shall be demand inappropriate!

1.3.6 Legal regulations

Liability

- The information, data and notes in these operating instructions met the state of the art at the time of printing, claims referring to drive systems which have already been supplied cannot be derived from the information, illustrations and descriptions.
- We do not accept any liability for damage or operating interference caused by:
 - inappropriate use
 - unauthorized modifications to the drive system
 - improper working on and with drive system
 - operating faults
 - disregarding these Operating instructions

Warranty

- Conditions of warranty: see General terms & conditions of sale of Emco Dynatorq Pvt.Ltd
- Warranty claims must be made immediately after detecting defects or faults.
- The warranty is void where liability claims cannot also be made.

2 Safety information

2.1 Personnel responsible for safety

Operator

- An operator is any natural or legal person who uses the drive system or on behalf of whom the drive system is used.
- The operator or his safety officer must ensure
 - -that all relevant regulations, instructions and legislation are observed.
 - -that only qualified personnel work with and on the drive system.
 - -that the personnel have the operating instructions available for corresponding operations.
 - -that non-qualified personnel are prohibited from working with and on the drive system.

Skilled personnel

Skilled personnel are persons who-because of their education, experience, instructions, and knowledge about corresponding standards and regulations, rules for the prevention of accidents and operating conditions are authorized by the person responsible for the safety of the plant to perform the required actions and who are able to recognize potential hazards.

2.2 General safety information

- This safety information is not claimed to be complete. In case of questions and problems please contact our Emco Dynatorq representative.
- At the time of delivery the spring-applied brake meets the state of the art and ensures basically safe operation.
- The spring-applied brakes is a source of danger for persons, for the spring applied brakes itself, and for other material assets of the operator, if
 - Unqualified personnel work with and on the spring –applied brakes.
 - The spring-applied brakes are used inappropriately.
- The spring-applied brakes must be designed such that they perform their functions after proper installation and with application as directed in fault free operation and that they do not cause hazards for persons. This also applies for their interaction with the complete system.
- Operate the spring-applied brake only when it is in a proper state.
- Retro fittings, modifications; or redesigns of the springs –applied brake are basically prohibited. Emco Dynatorg must be contacted in all cases.
- Protect the mounting flange, friction surfaces and armature against dirt. They must be kept free
 from oil and grease at all cases. Even small dirt particles can considerably reduce the brake
 torque

Application conditions of the spring-applied brake WP.458

- Not suitable to explosive or aggressive environment.
- Humidity, no restriction.
- Ambient temperature :5°C to +55°C
- With high humidity and low temperature:
- Take measures against freezing of armature plate and rotor.
- Cooling –air flow must not be obstructed/Free cooling-air flow.
- Protect the electrical connections against short circuit.

2.3 Layout of the safety information

• All safety information in these operating instructions has a uniform layout;

Signal ward Notes

- -The icon designates the kind of danger.
- -The signal word designates the severity of the danger.
- -The notes describe the danger and suggest how to avoid the danger.

Warning of personal injury

Icon used	Signal war	Signal wards		
Warning of Hazardous electrical voltage. Warn a general danger		Warns of impending danger. Consequences if disregarded: Death or very severe injuries.		
Warning of a general da	Warning!	Warns of a potential, very hazardous situation.Consequences if disregarded: Death or very severe injuries.		
	Caution!	Warns of a potential material damage. Consequences if disregarded: Light or minor injuries.		

Warning of material damage

Icons used	Signal wards	3
STOP	Stop!	Warns of potential material damage. Consequences if disregarded: Damage of the drive system/device or its environment.

Other information

Icons used	Signal wa	ards
i	Note!	Designates a general, useful note. If you observed it, handling of the drive system/device is made easier.

3.1 Product Description

- 1. Stator
- 2. Armature
- 3. Compression spring
- 4. Wear adjustment tube
- 5. Rotor
- 6. Friction lining(Non-Asbestos)
- 7. Hub
- 8. Mounting flange
- 9. Socket head cap screw
- 10. Spring washer
- 11. Enclosure housing cover
- 12. Manual hand release plug
- 13. Hand release screw
- 14. Air gap checking
- 15. Brake cable gland
- 16. "O" Ring
- 17. Enclosure mounting screw
- 18. Microswitch (Optional Items)
- 19. Terminal Box (Optional Items)

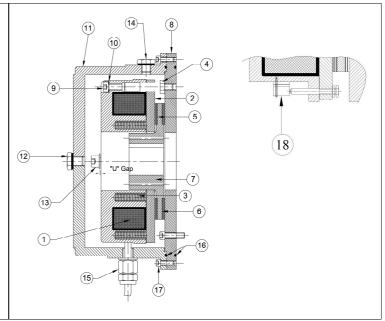


Figure 4: Design of a Spring Applied Brake Type: WP.458 (without Hand Release)

3.1.1 General

The spring applied brake type WP.458 is a single disc brake with two friction surfaces. Several springs generate the brake torque by friction. The brake is released Electromagnetically.

The spring applied brake Type WP.458 is designed for conversion of mechanical work and kinetic energy into heat. By means of the static brake torque it is possible to hold loads without a speed difference. Emergency braking at high speeds is possible; however it results in increased wear.

3.1.2 Braking

During braking, the rotor which is axially movable on the hub, is pressed against the friction Surface-via the armature plate- by means of inner and outer springs. The friction linings ensure a high brake torque. The brake torque is transmitted between hub and rotor via splines.

3.1.3 Releasing

When the brake is applied, there is an air gap between stator and armature plate. For releasing the brake, a DC voltage is applied to the stator coil. The Magnetic force generated attracts the armature towards the stator against the spring force. The rotor is then released and can rotate freely.

3.1.4 Brake Torque Reduction

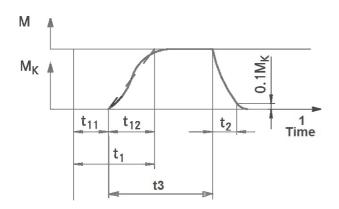
By reducing the spring force brake torque can be reduced by unscrewing the torque adjusting ring in anti-clockwise direction.

3.1.5 Option: Micro Switch

The manufacturer offers the micro switch for air gap and wears monitoring. The users must provide the corresponding electrical connection. Circuit diagram can be made available on request. With air gap monitoring, the motor does not start before the brake has been released. With this Set-up all possible faults are monitored. For Example, in the event of defective rectifiers, interrupted connection cables, defective coil, or excessive air gaps the motor will not start. While checking the wear, no current will be applied to the brake and motor if the air gap is too large.

3.2 Rated Data

Туре	Rated Brake torque	Air Gap-ʻa' (mm)		Excess end Torque Adjustment ring	Torque Reduction/ step	Release Gap-U
	Nm	Rated+/- 0.05mm	Max	Max.	Nm	(MM)
WP.458.06	4	0.2	0.5	6	0.1	1
WP.458.08	8	0.2	0.5	6.5	0.2	1
WP.458.10	16	0.2	0.5	8.5	0.6	1
WP.458.12	32	0.3	0.7	10	1.2	1
WP.458.14	60	0.3	0.7	11.5	1.6	1
WP.458.16	100	0.3	0.7	11.5	2.1	1.5
WP.458.18	150	0.4	1.0	13	1.4	1.5
WP.458.20	260	0.4	1.0	15	2.0	1.5
WP.458.25	400	0.5	1.2	17	5	2
WP.458.31	600/800	0.5	1.2	17	5	2
WP.458.40	1200/1600	0.5	1.2			2
WP.458.50	2500	0.8	2			2


	Dimensions (mm)			Tapped Holes	Screws for flange fixing	Screw Tightening torque
Туре	Rotor Thic	Thickness Mounting		VI	X nos.	N.
	Rated	Min	PCD	X Nos.	A nos.	Nm
WP.458.06	6	4.5	72	M4 x 3	M4 x 3	3.0
WP.458.08	7	5.5	90	M5 x 3	M5 x 3	5.9
WP.458.10	9	6.0	112	M6 x 3	M6 x3	10.1
WP.458.12	10	7.0	132	M6 x 3	M6 x 3	10.1
WP.458.14	10	7.0	145	M8 x 3	M8 x 3	24.6
WP.458.16	11.5	8.5	170	M8 x 3	M8 x 3	24.6
WP.458.18	13	9.5	196	M8 x 6	M8 x 4	24.6
WP.458.20	16	10.5	230	M10 x 6	M10 x 6	48
WP.458.25	20	14.0	278	M10 x 6	M10 x 6	48
WP.458.31	20	14.0	278	M10 x 6	M10 x 6	48
WP.458.40	22	14.0	325	M10 x 6	M10 x 6	48
WP.458.50	30	22.0	480	M16 x 6	M16 x 6	190

Note: Screw length depends on material and thickness of the customer's mounting surface.

Type & Brake Size	Power DC Voltage		Coil Re	Rated torque	
	Watts	Do Voltago	Min	Max	Nm
		24	27.5	30.5	
		96	430.8	491	
		103	491	570	_
WP.458.06	20	110	569	647	4
		190	1660	1950	
		205	1933	2270	
		220	2224	2610	
		24	22	24.5	
		96	346.5	391	
WD 450 00	05	103	399	450	
WP.458.08	25	110	456	513	8
		190 205	1336 1555	1552 1807	
		220	1782	2091	
		24	18.24	20.1	
		96	281	313	
		105	313	350	
WP.458.10	30	110	381.1	425.5	16
*** : 100:10	00	190	1125	1282	10
		205	1191	1358	
		220	1413	1610	
		24	13.8	15	
		96	218.8	242.5	
		103	250.6	279.8	
WP.458.12	40	110	287.5	319	32
		190	848.4	956.7	
		205	987.6	1114	
		220	1138	1284	
		24	11	12	
		96	175.1	193.5	
		103	190.2	210.2	
WP.458.14	50	110	230.18	256.82	60
		190	682.3	761.7	
		205	749.3	836.5	
		220	921	1017	
		24	7.29	7.9	
		96	116	126	
WP.458.16	76	103	134	145 166	100
VVP.456.16	70	110 190	152 456	494	100
		205	530	575	
		220	611.5	662.5	
		24	6.4	7.1	
		96	103.5	113.5	
		103	120	130	
WP.458.18	85	110	133.94	151	150
		190	403.5	446	
		205	469.7	519.1	
		220	540.5	598	
		24	5.5	6.02	
		96	88.0	96.5	
		103	101.8	110.2	
WP.458.20	100	110	112	131	260
		190	342.5	379.5	
		205	399	441	
		220	459.5	508.5	
		24	5.0	5.5	
		96	80.0	87.6	
MD 456.35	445	103	91.5	101.3	
WP.458.25	110	110	105	115	400
* *		190	311.8	341.6	
		205	366.7	397.2	
		220	413.6	466.4 4.28	1
		~ 4		/ / / / V	i.
		24	3.95		
		96	63.1	68.4	
	140	96 103	63.1 72.8	68.4 78.8	200
WP.458.31	140	96 103 110	63.1 72.8 83.04	68.4 78.8 90	600
	140	96 103	63.1 72.8	68.4 78.8	600

Type & Brake Size	Power Watts	DC Voltage	Coil Res (Ω	Rated torque	
	vvalls		Min	Max	Nm
		24	3.07	3.32	
		96	49.1	53.2	
		103	56.6	61.4	
WP.458.31	180	110	64.6	70	800
		190	192	208	
		205	223.6	242.3	
		220	258.2	279.8	
		96	26	28.18	
		103	30	32.2	
WP.458.40	340	110	34.17	37.02	1200 / 1600
WP.456.40		190	99.83	112.57	1200 / 1600
		205	121	131	
		220	136.6	148	
		96	20.1	21.84	
		103	23.14	25.07	
WP.458.50	440	110	25.8	28.2	2500
WF.400.00	440	190	77.94	86.15	2300
		205	91.7	99.3	
		220	105.6	114.4	

3.3 Operating Times

The engagement times are valid for switching on DC side. The table shows the delay during engagement **t11**, the rise time of brake torque **t12** and

the engagement time t1=t11 + t12.

Disengagement time is not influenced by DC or AC side switching.

However it can be reduced by suitable excitation or over excitation.

t1	Engagement time
t2	Disengagement time

t11 Delay time

t12 Rise time of brake torque

t3 Slipping time

Brake size	t11 ms	t12 ms	t1 ms	t2 ms
WP.458.06	7	10	17	35
WP.458.08	10	25	35	65
WP.458.10	10	30	40	90
WP.458.12	10	40	50	120
WP.458.14	15	50	65	150
WP.458.16	20	70	90	180
WP.458.18	30	80	110	300
WP.458.20	50	150	200	400
WP.458.25	70	200	270	500
WP.458.31	73	207	280	650
WP.458.40	82	243	325	780
WP.458.50	90	300	390	980

Disengagement time

The disengagement time is not influenced by DC or AC switching operations. It can only be shortened by special equipment for fast–response excitation or over-excitation.

Engagement time

The engagement time t₁ is apply to DC switching with rated air gap work approximately 8 to 10 times longer for AC switching coil and standard rated torque.

AC side switching

- Low-noise switching of the brake
- No protective measures required for switching contact.
- · Slow application of the brake.

DC side switching

- · Noisy switching
- Burn-up protection for switching contact required (e.g. varistor, free-wheeling diode)
- Fast application of the brake.

Note: Engagement time is the time when armature is fully released from the brake stator after voltage is withdrawn. Disengagement time is the time when brake is released after voltage is applied to the coil

3.4 Torque v/s Speed data

Torque v/s Speed						
Draka Sina	Rated torque	Reduction of rated to	Reduction of rated torque at specified speed to x% max. spe			
Brake Size	(Nm)	at 1500 rpm	at 3000 rpm	Max.		
WP.458.06	4	85 %	80 %	70 %		
WP.458.08	8	85 %	78 %	72 %		
WP.458.10	16	82 %	78 %	70 %		
WP.458.12	32	82 %	78 %	70 %		
WP.458.14	60	81 %	73 %	70 %		
WP.458.16	100	80 %	72 %	69 %		
WP.458.18	150	78 %	70 %	69 %		
WP.458.20	260	76 %	68 %	66 %		
WP.458.25	400	72 %	68 %	66 %		
WP.458.31	600 / 800	69 %	67 %	66 %		
WP.458.40	1200 / 1600	66 %	64 %	64 %		
WP.458.50	2500	64 %	61 %	60 %		

Liner wear increases proportional to speed & liner powder will be observed falling.

3.6 Emission

Heat

Since the brake converts kinetic energy as well as mechanical and electrical energy into heat, the surface temperature varies considerably, depending on the operating conditions and the possible heat dissipation. Under unfavorable conditions, the surface temperature can reach 130°C.

Noises

The switching noises during engagement and disengagement depend on the air gap and the brake size.

Depending on the natural oscillation after installation, operating conditions and state of the friction faces, the brake may squeak during braking.

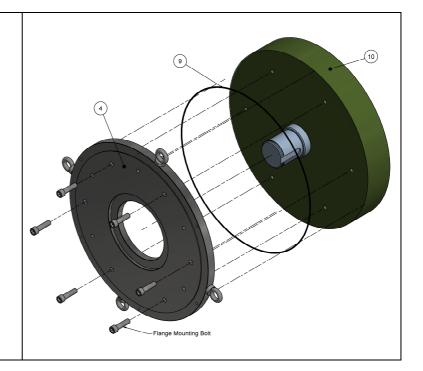
Others

The abrasion of the friction parts produces dust. With large loads, the friction face heats up so strongly, that odors may occur.

4.1 Preparation

- 1. Unpack spring- applied brake.
- 2. Check if delivery arrived as ordered.
- 3. Check name plate data, especially rated voltage.
- 4. Remove the mounting flange by unscrewing the mounting screws

4.2 Assembly


4.2.1Assembly of mounting flange on to Motor End Shield.

Stop !

Check the motor end shield. It must be free from Grease and Oil

- 4 Mounting flange
- 9 'O' Ring
- 10 End Shield
- * Face run-out of motor end shield w.r.t. shaft should not be more than 0.08mm

Flange mounting bolt not in our scope

Figure 5: Assembly of mounting flange.

- 1. The flange should be screwed on to the shield with the inner or outer pitch Circle (for dimensions see rated data table 3.2).
 - ** If flange is spigot mounted on motor end shield one should ensure that it is seated perfectly butting with motor end shield.
- 2. Hold the flange to the end shield and check the pitch circle and the threads of the fastening holes.
- 3. Push the spring lock washers onto the screws and screw the flange onto the end shield.
- 4. Tighten the screws evenly.
- 5. Check the height of the screw heads. On the outer pitch circle the screw heads must not be higher than the minimum rotor thickness.(for dimensions refer rated data table, chapter 3.2)

4.2.2 Mounting the Hub onto Motor Shaft.

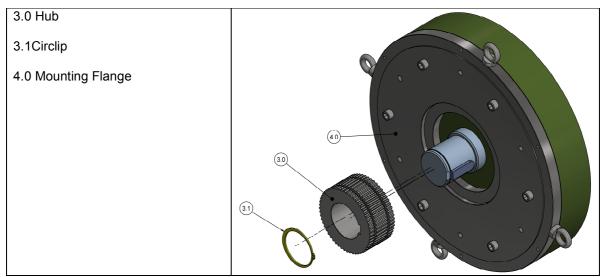


Fig 6: Mounting of Hub

- 1. Press the hub on the shaft & key. Ensure that hub should not be insert on shaft by hammering. Also ensure that hub should not be loose on motor shaft.
- 2. Secure the hub against axial movement, e.g. with a circlip. (3.1)

Stop!

Check the motor end shield/flange.It must be free from Grease and Oil.

4.2.3 Assembly of Rotor

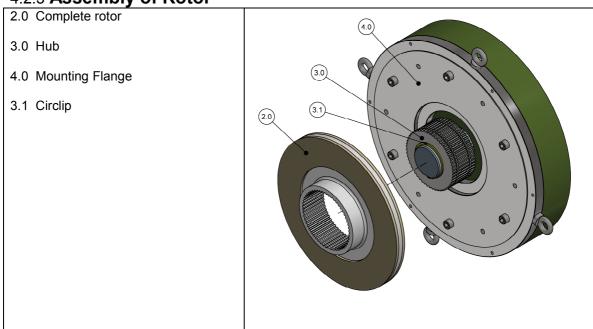


Figure 7: Mounting of Rotor

- 1. Push the rotor onto the hub and check whether it can be moved to and fro freely by hand.
- 2. Ensure that rotor is not too tight on hub, it should slide on it.

4.2.4 Assembly of Stator

- 1.2 Complete Stator Assembly
- 4.0 Mounting Flange
- 2.0 Complete rotor
- 8.1 Allen screw
- 8.2 Spring lock washer

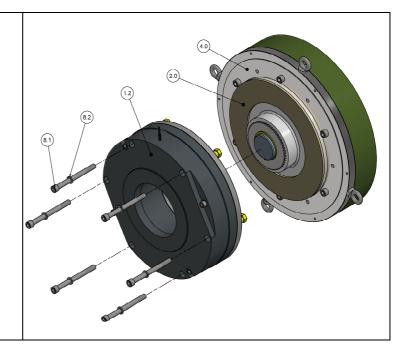


Figure 8: Mounting of Stator

- 1. Push the spring lock washers (8.2) on the screws and screw (8.1) the complete stator (1.2) onto the flange/end shield.
- 2. Tighten the screws (8.1) evenly (Refer data 3.2 on page 10 for screw tightening torque)
- 3. Check the rated air gap near the bolts by means of the feeler gauge (for air gap see rated data table-chapter 3.2)

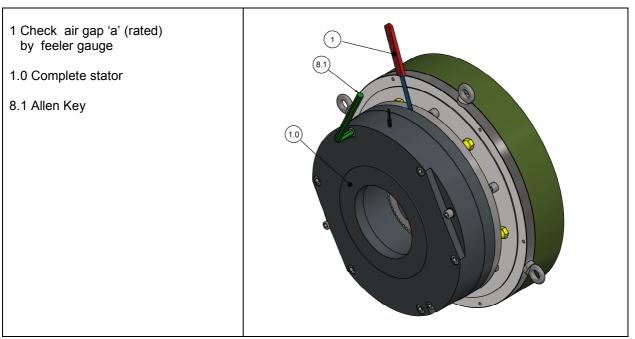


Figure 9: Setting of Air gap.

- 1.0 Complete stator
- 1.6 Adjustment tubes
- 8.1 Socket head cap screw
- 1 Check air gap 'a' (rated) by feeler gauge

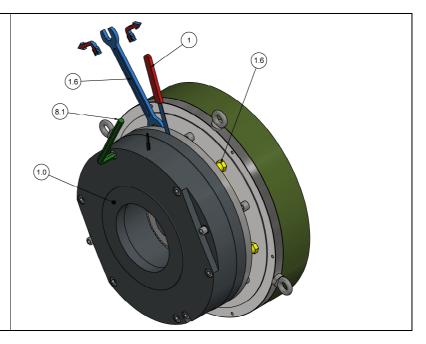
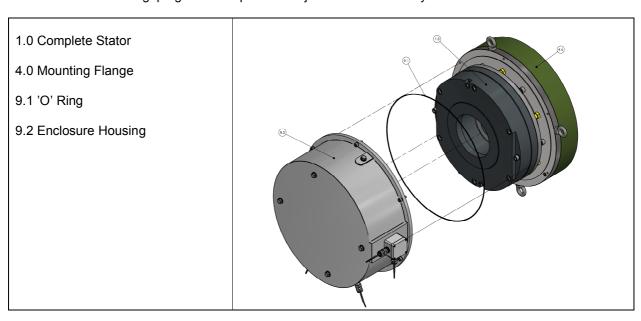
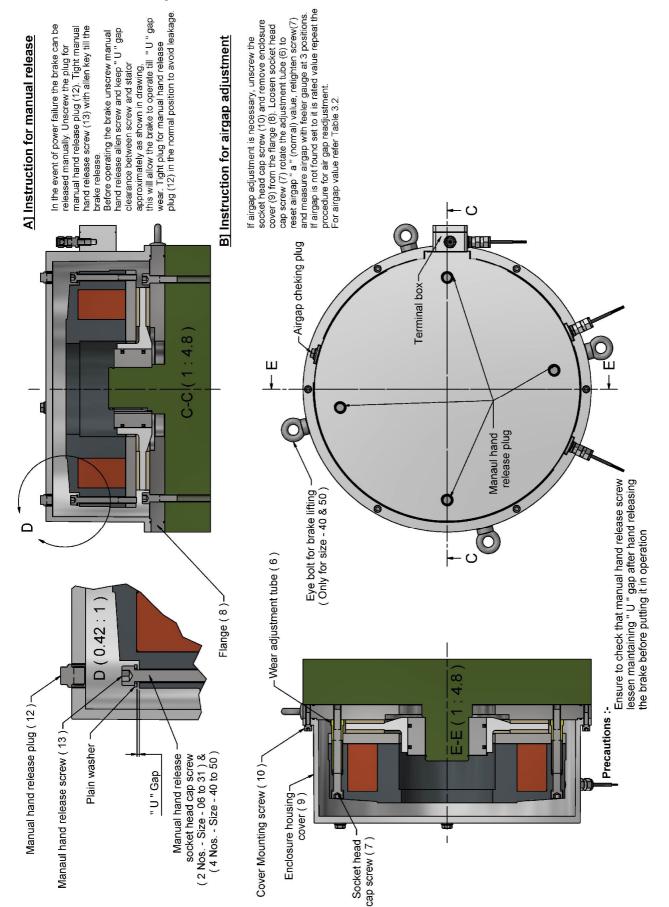
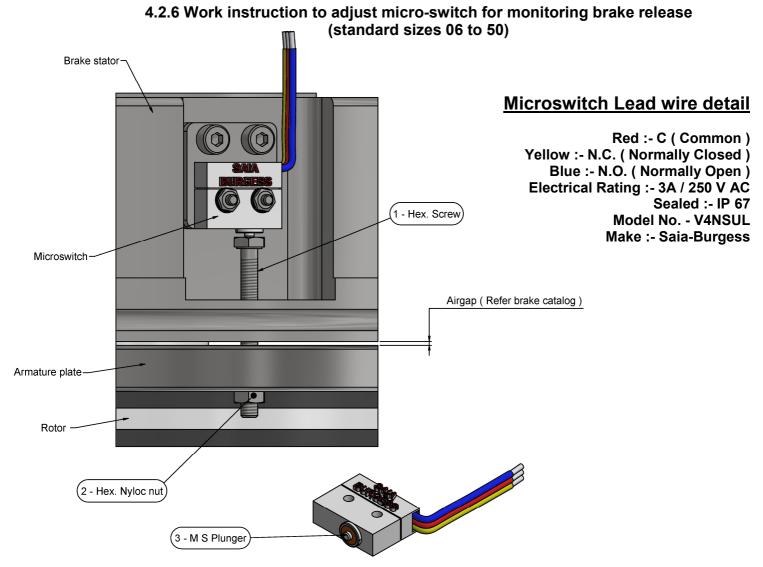



Figure 10: Readjustment of Air gap.


Note: If the air gap deviates too much from rated air gap 'a' re-adjust as follows.

- 1. Loosen the screws. (8.1) with the help of allen key
- 2. Turn the threaded adjustment tubes by means of a spanner.
 - Screw the adjustment tubes (1.6) into the stator (1.0) (i.e rotate it in clockwise direction)if the air gap is too large.
 - Screw the adjustment tubes (1.6) out of the stator (1.0) (i.e rotate it in anti-clockwise direction) if air gap is too small.
 - The width of the air gap changes by approx 0.15mm when turning the wear adjustment tube by 1/6 revolution.
- 3. Tighten the screws. (8.1)
- 4. Check the air gap again and repeat the adjustment if necessary.



4. Installation

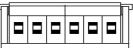
4.2.5 Assembly of manual release for size - 06 to 50

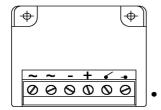
4. Installation

To ensure smooth functioning & adjustment of Microswitch below mentioned procedures are to be followed.

- > Rotate hex nyloc nut in anti-clockwise direction to release nut from armature plate.
- > Release hex screw (1) from MS plunger (3) by rotating it in clock wise direction.
- Connect micro switch wire red(C) & blue(NO) with the continuity tester/multimeter.
- Release brake by applying DC volt to brake coil.
- Rotate hex screw (1) slowly in anti-clockwise direction till it touches & press MS plunger(3) which changes its state from "NO" to "NC".
- For fine tuning rotate 1/4 to 1/2 turn of hex screw (1) in clockwise direction which changes microswitch condition from "NO" to "NC".
- Fix hex screw (1) by tightening nyloc nut (2) so that micro switch setting is fixed & it doesn't get disturbed on brake operations.
- > Now remove DC voltage from brake, micro switch should now show "NO" condition .
- > Test the brake for few number of "ON-OFF" operation for ensuring micro switch setting doesn't gets disturbed.

4.3 Electrical Connection

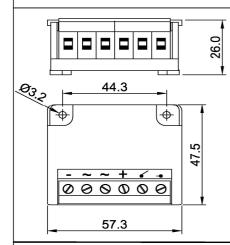



Warning!

The Electrical connection of the brake must only be carried out when no voltage is applied.

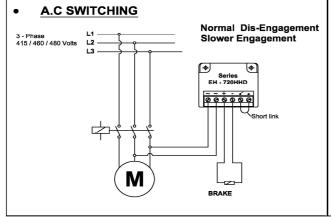
Solid State Rectifier EH 720 Series Mounting Dimension & Connection Diagram

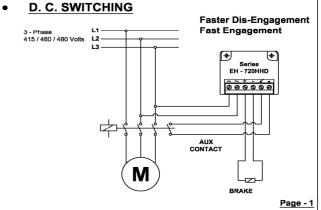
Salient Features :-



- Compact In Size
- Based on German designs.
- Use of High quality components.
- 6 Terminals as standard for connections.
- Suitable to mount in standard motor terminal box.
- Standard excitation.
- Available in half wave or full wave configuration.
- Suitable for carrying our AC side switching & DC side switching.
- DC side switching protection included.
- Maximum allowable ambient temperature 85 degree C.
- Current rating :- 2 Amps.

Type EH 720 Series brake rectifier is used to supply DC voltage to DC operated brakes on electric motors, where standard release reaction time of the brake is required.

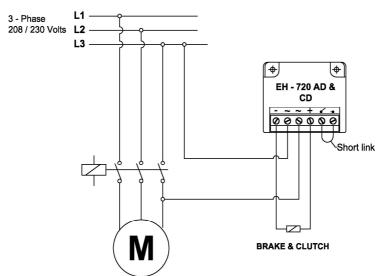

Solid State Rectifier EH 720 Series Mounting Dimension



EH Series	Full Wave and Half Wave Rectifiers for 50 / 60 Hz VAC Input				
Model	Input	Output			
EH 720 AD	208 / 230 VAC	190 / 205 VDC, 2 Amp.			
EH 720 BD	115 VAC	103 VDC, 2 Amp.			
EH 720 CD	208 / 230 VAC	96 / 103 VDC, 2 Amp.			
EH 720 HHD	415 VAC	190 VDC, 2 Amp.			
EH 720 HHD - AV	415 / 460 VAC	190 / 205 VDC, 2 Amp. max			
EH 720 HHD - AVH	480 VAC	215 VDC, 2 Amp. max			

Note: - 103 DC output also sutable for 96 VDC Brakes

Solid State Rectifier " EH 720 HHD / HHD - AV / HHD - AVH " Connection Diagram

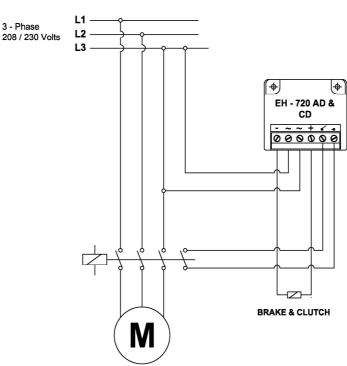


Solid State Rectifier EH 720 Series Mounting Dimension & Connection Diagram

Solid State Rectifier "EH 720 AD / BD / CD " Connection Diagram

A.C SWITCHING

Normal Dis-Engagement Slower Engagement



Note :- For EH 720 BD input voltage 115 VAC (line to neutral)

D.C. SWITCHING

3 - Phase

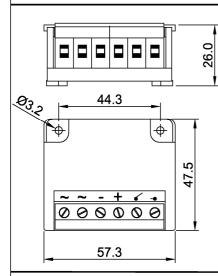
Faster Dis-Engagement Fast Engagement

Note :- For EH 720 BD input voltage 115 VAC (line to neutral)

Page - 2

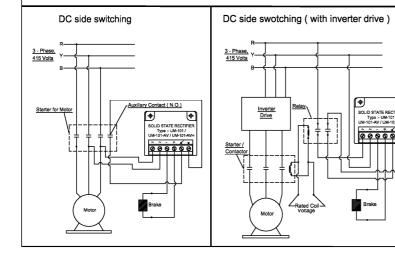
Solid State Rectifier UM-101 Series Mounting Dimension & Connection Diagram

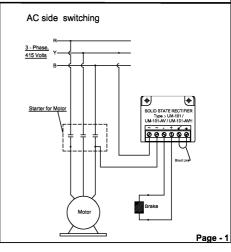
Salient Features :-


000000

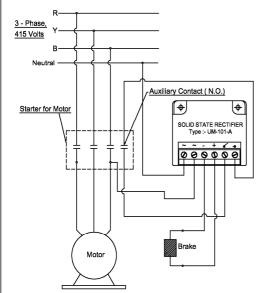
ф

Φ


- Compact In Size
- Based on German designs.
- Use of High quality components.
- 6 Terminals as standard for connections.
 Double voltage over excitation for 300 m.sec.
- Recommended for brakes size 18 to 31, for quick dis-engagement.
- Available in half wave configuration.
- Suitable for carrying aut AC side switching & DC side switching.
- DC side switching protection included.
- Maximum allowable ambient temperature 70 degree C.
- Current rating :- 2 Amps.
- Type UM 101 Series brake rectifier is used to supply DC voltage to DC operated brakes on electric motors, where quick release reaction time of the brake is required.


Solid State Rectifier UM-101 Series Mounting Dimension

UM-101 Series	With over-excitation for fast release of normally on brake or fast engagement of normally off brake or clutch, 50/60 Hz VAC input				
Model	Input	Output			
UM-101	415 VAC	190 VDC, 2 AMp.			
UM-101-AV	415 / 460 VAC	190 / 215 VDC, 2 Amp. max			
UM-101-AVH	480 VAC	215 VDC, 2 Amp. max			
UM-101 - A	230 VAC	103 VDC, 2 Amp.			

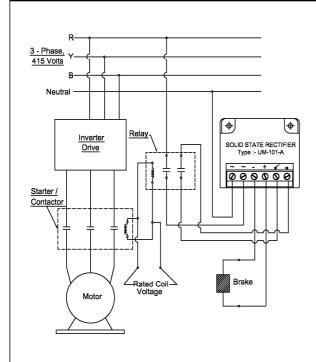

Solid State Rectifier " UM-101 / UM-101-AV / UM-101-AVH " Connection Diagram

Solid State Rectifier UM-101-A Connection Diagram

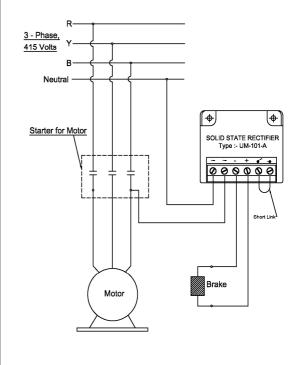
Solid State Rectifier " UM-101-A " Connection Diagram

DC side switching

Please read the instructions before using the rectifier

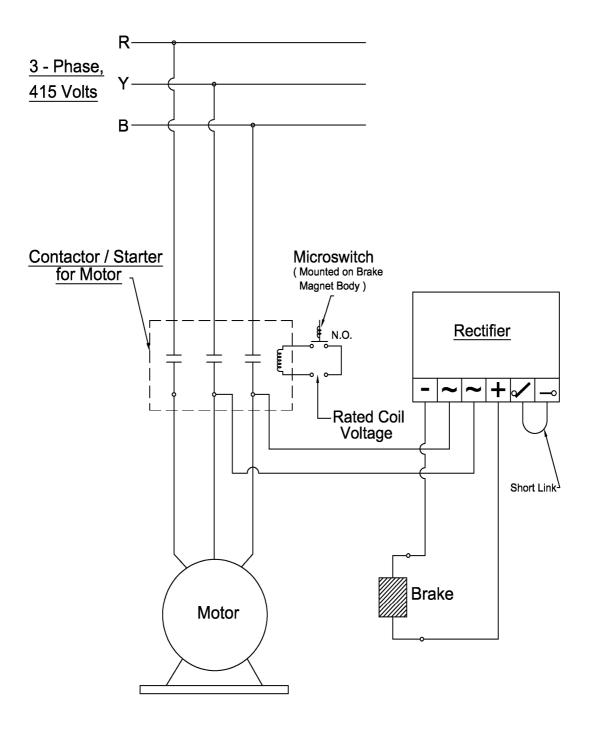

 Rectifier UM-101, UM-101-AV & UM-101-A is a fast acting rectifier which initially gives higher dc voltage for a few milliseconds. By using this rectifier the spring loaded brakes are disengaged much faster. For fast engagement of the brake dc switching (option provided) should also be used.

IMPORTANT:- With switching on DC side, switching must also be done on the AC side, otherwise no over - excitation can take place when the brake is switched on again and fast disengagement of brake will not take place.


Note:- As per the circuit diagram connection must be made so that AC input to the rectifier is from the load side. Reason being after AC is applied to the rectifier with in 200 ms the rectifier cuts out over excitation by output getting converted from full wave to half wave DC. Caution: Applying from line side would only operate as half wave to function without over excitation.

 Above schematics are with AC and DC switching for fast disengagement and fast engagement of the brake.

Model	Input	Output
UM-101 - A	230 VAC	103 VDC, 2 Amp.



DC side switching (with inverter drive)

AC side switching

4.4 Microswitch Connection diagram for release / wear monitoring

4. Installation

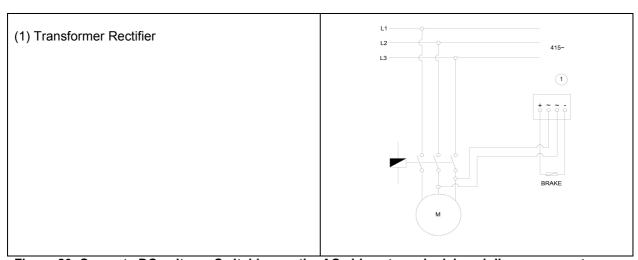


Figure 20: Separate DC voltage- Switching on the AC side extremely delayed disengagement.

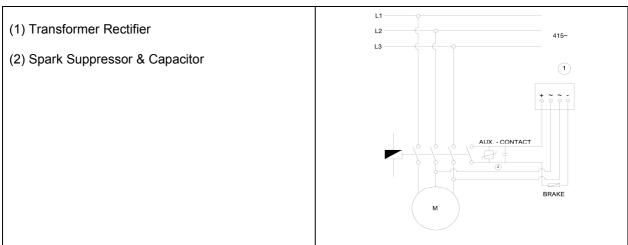


Figure 21: Separate DC voltage- Switching on DC Side - fast engagement, slightly delayed disengagement

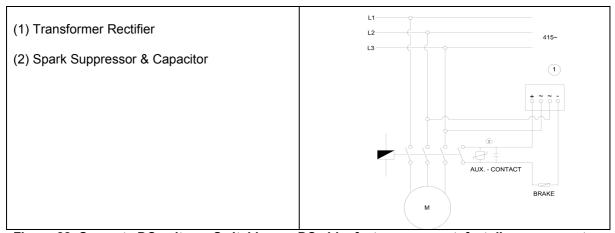


Figure 22: Separate DC voltage: Switching on DC side-fast engagement, fast disengagement

Note!

- Install the rectifier in the terminal box (not applicable to Transformer Rectifier). For motors
 with insulation class H, the rectifiers must be installed in the control cabinet. The permissible
 ambient temperature for the rectifier should not exceed 60⁰ c.
- 2. Compare the coil voltage of the stator (1.1) to the DC voltage of installed rectifier.
- 3. Select the suitable circuit diagram considering input & output of Rectifier & Brake coil operating voltage.
- 4. Motor and brake must be wired according to the requirements of engagement time.

5. Set up and Operation.

Warning!

The live connections and the rotating rotor must not be touched! The rotor must not rotate while checking the brake operation.

5.1 Operation Test.

For Faults see chapter7 - Trouble shooting and Fault Elimination

Release/ voltage check.

Only for brakes without microswitch.

Warning!

Live connection must not be touched.

- Remove two of the links to the motor terminals. Do not switch off the voltage for the brake.
- 2. Connect the main supply.
- 3. Measure the Dc voltage at the brake
- Compare the measured DC voltage indicated on the name plate. A deviation of max 10% is permissible.
- 5. Check the air gap 'a'. It must be zero and the rotor must rotate freely.
- 6. Disconnect the mains supply.
- 7. Bolt the links to the motor terminals

5.1.2 Manual Release

This operational test is to be carried out additionally.

Warning!

Disconnect the mains supply. The motor must not rotate

- 1. Pull the manual release lever towards you until the resistance increases strongly.
- 2. The rotor must rotate freely by hand. Small residual torque is permissible.
- 3. Release the lever.

5.3 During Operation

Check your brake regularly during operation. Please pay attention to

- unusual noises or temperature
- Loose fixing elements.
- The cables

In the event of faults, read the chapter 7. "Trouble shooting & Faults Elimination" If the faults cannot be eliminated contact –Emco Dynatorq.

6. Maintenance/ repair

Inspection intervals

The wear of the rotor friction lining depends upon the operating conditions. The Time until readjustment, does not only depends on the friction work. The friction work per operation decreases steadily until readjustment takes place. High speed differences additionally reduce the friction work until readjustment. The inspection intervals must be adapted to the operating conditions and can be prolonged if the wear is small.

6.2 Inspection

6.2.1 Rotor thickness

Warning!

The motor must not rotate while checking the rotor thickness. The rotors may rust up and block in corrosive ambient conditions and/or after long periods of storage.

- 1. Remove the motor cover and the rubber seal of the brake.
- 2. Measure the rotor thickness by using a vernier caliper.
- 3. Compare the measured rotor thickness to the minimum permissible rotor thickness (for values refer rated data table chapter 3.2)
- 4. If necessary, replace the rotor. For Description see chapter 6.3.2.

6.2.2 Air gap

Warning!

The motor must not rotate while checking

- 1. Measure the air gap between the armature plate and stator by means of a feeler gauge.
- 2. Compare the measured air gap to the maximum permissible air gap (for values refer rated data table chapter 3.2).
- 3. If necessary, adjust the air gap to the rated air gap. For description on how to re-adjust the air gap chapter 6.3.1

6.2.3 Release/ voltage

Warning!

The rotating rotor must not be touched.

Warning!

The live connections must not be touched.

- 1. Observe the air gap "a" during operation. It must be zero .
- 2. Measure the DC voltage at the brake during operation. It must be the same as the voltage indicated on the name plate. A deviation of maximum 10% is permissible.

6.3 Maintenance

6.3.1 Readjustment of Air gap

Warning!

Disconnect the brake from Mains. The motor must not rotate.

- 1. Loosen the allen screws.
- 2. Turn the threaded adjustment tubes by means of a spanner.
 - Screw the adjustment tubes into the stator if the air gap is too large.
 - Screw the adjustment tubes out of the stator if air gap is too small.
 - The width of the air gap changes by appprox. 0.15 mm when turning the sleeve by 1/6 revolution.
- 3. Tighten the screws.
- 4. Check the air gap again and repeat the adjustment if necessary.

6.3.2 Replacement of rotor

Warning!

Disconnect the brake from Mains. The motor must not rotate.

- 1. Disconnect the supply cable.
- 2. Loosen the allen screws evenly and remove them.
- 3. Completely remove the stator from the end shield. Take necessary precaution to avoid damages to lead wire.
- 4. Pull the rotor from the hub.
- 5. Check the splines of the hub. In case of wear, the hub must also be replaced.
- 6. Check the flange. In case of strong scoring at flange, replace flange.
- 7. Measure the rotor thickness (new) and head height of the threaded wear adjustment tubes by means of vernier caliper.
- 8. Calculate the distance between stator and armature plate as follows:
 - Distance= Rotor thickness + Rated air gap- head height
 - (for rated air gap see rated data table chapter 3.2)
- 9. Loosen the threaded adjustment tubes until the calculated distance between stator and armature plate is reached.
- 10. Install and adjust the new rotor and brake (see Chapter 4.2.3)
- 11. Reconnect the mains supply cable.

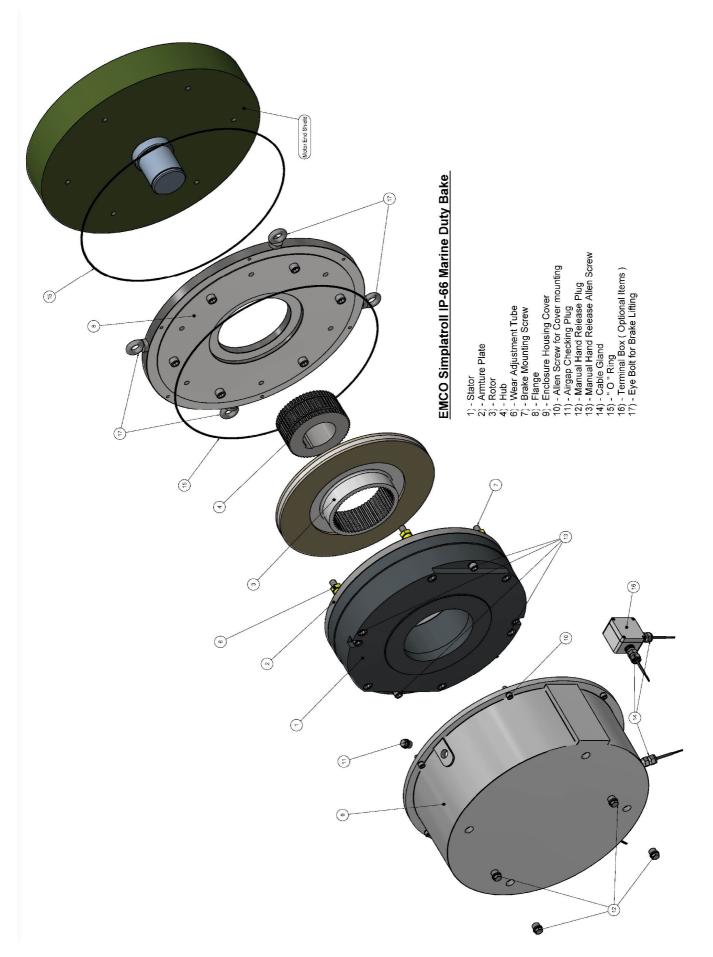
6.3.3 Replacement of Armature Plate

Warning!

Disconnect the brake from Mains. The motor must not rotate.

- 1. Disconnect the supply Cable.
- 2. Loosen the allen screws evenly and remove them.
- 3. Completely remove the complete stator (1.0) from the end shield. Observe the supply cable.
- 4. Completely unscrew the threaded adjustment tubes from the stator assembly (1.0).
- 5. Also remove the manual hand release.
- 6. Remove the armature plate.
- 7. Check the compression springs. If any are broken or damaged replace.
- 8. Insert the compression spring into the outer bore holes of the outer stator pole.

 Insert the compression parts and compression spring into the inner pole of the stator.
- 9. Put the new armature plate on the compression spring. Observe the pitch circle of stator and armature plate and ensure tapped holes of stator are matched with armature plate holes.
- 10. Mount the Hand release in the same way as it was removed.
- 11. Measure the rotor thickness and head height of the threaded wear adjustment tubes by means of a vernier caliper.
- Calculate the distance between stator and armature plate as follows:
 Distance= Rotor thickness + Rated air gap head height.
 (For rated air gap see rated data table chapter 3.2)
- 13. Loosen the threaded adjustment tubes until the calculated distance between stator and armature plate is reached.
- 14. Install and adjust the new rotor and brake (see chapter 4.2.3)
- 15. Reconnect the mains supply cable.


6.4 Spare- parts list

Only parts with order numbers are available.

The order numbers are valid only for the standard design.

Brake parts Name	Brake size											
·	06	08	10	12	14	16	18	20	25	31	40	50
1) Stator – armature assembly	1	1	1	1	1	1	1	1	1	1	1	1
2) Armature plate	1	1	1	1	1	1	1	1	1	1	1	1
3) Rotor	1	1	1	1	1	1	1	1	1	1	1	1
4) Hub	1	1	1	1	1	1	1	1	1	1	1	1
6) Wear adjustment tube	3	3	3	3	3	3	6	6	6	6	6	6
7) Brake mounting screw	3	3	3	3	3	3	6	6	6	6	6	6
8) Flange	1	1	1	1	1	1	1	1	1	1	1	1
9) Enclosure housing cover	1	1	1	1	1	1	1	1	1	1	1	1
10) Socket head cap screw	4	4	4	4	6	6	6	6	6	6	6	6
11) Airgap checking plug	1	1	1	1	1	1	1	1	1	1	1	1
12) Manual head release plug	2	2	2	2	2	2	2	2	2	2	4	4
13) Socket head cap screw	2	2	2	2	2	2	2	2	2	2	4	4
14) Cable gland	2	2	2	2	2	2	2	2	2	2	2	2
15) " O " ring	2	2	2	2	2	2	2	2	2	2	2	2
16) Terminal box (Optional items)	1	1	1	1	1	1	1	1	1	1	1	1
17) Eye bolt for brake lifting	Only for size – 40 & 50											

6. Maintenance / Repair

7. Troubleshooting and fault elimination

7. Troubleshooting

Problem	Cause	Remedy
Brake does not release, air gap is not zero	Coil open	Measure coil resistance using a multimeter. If resistance is too large replace the entire stator.
	Coil has contact to ground or between the winding	 Measure coil resistance using a multimeter compare measured resistance to rated resistance for values see chapter 1.2. If resistance is too low replace. Check the coil for contact to ground using a multimeter in case of contact to ground, replace entire stator. Check the brake voltage-rectifier defectives/ voltage too low.
	Writing wrong or defective	Check wiring and correct it. Check cable for continuity using a multimeter replace defective cable
	Rectifier defective or wrong	Measure DC voltage at rectifier using multimeter. If voltage is zero. Measure AC voltage at rectifier. If AC voltage is zero, Apply voltage, check fuse, check wiring If AC voltage is okay: check rectifier, replace defective rectifier If DC voltage is too low: check rectifier use half wave rectifier instead of bridge rectifier if diode is defective use suitable new rectifier. Check coil for contact to ground or between windings. If a rectifier defect occurs several times replace entire stator, even if a contact to ground or between windings cannot be measured. The fault may occur only in warm state.
	Air gap too large	Readjust the air gap.(chap. 6.3.1)
Rotor cannot rotate freely	Incorrect adjustment of manual release	Check 'u' gap at manual release when current applied to brake. It should be same at both ends. Correct if necessary.
	Air gap too small	Check and adjust if necessary. (chapter 6.3.1)
Rotor thickness too small	Rotor was not replaced in time	Replace the rotor(Chapter 6.3.2)
Voltage too high	Brake voltage does not match with rectifier	Match brake voltage and rectifier to each other.
Voltage too low	Brake voltage does not match with rectifier	Match brake voltage and rectifier to each other.
	Diode in the rectifier is defective	Replace rectifier by suitable new one.
AC voltage is not mains voltage	Fuse is missing or defective	Select connection where fuse is not missing or defective.

7. Troubleshooting and fault elimination

	Air gap too large	 Readjust the air gap.(chap. 6.3.1)
Rotor cannot rotate freely	Incorrect adjustment of manual release	Check 'u' gap at manual release when current applied to brake. It should be same at every
		manual
		releases screw().
		Correct if necessary.
	Air gap too small	Check and adjust if necessary. (about of 6.3.1)
Date did a series	Determine the district	(chapter 6.3.1)
Rotor thickness too small	Rotor was not replaced in time	Replace the rotor(Chapter 6.3.2)
Voltage too high	Brake voltage does not match	 Match brake voltage and Brake
	with Brake Controllers Output	Controllers to each other.
Voltage too low	Brake voltage does not match with Brake Controllers Output	Match brake voltage and Brake Controllers to each other.

Do's and Dont's to get an optimum performance of the Brakes

Do's	Dont's
Brake manual release should be free of the motor	Don't operate brake if manual release is not operating.
2. Air gap adjustment has to be done when armature plate touches washer of hand release because of excessive wear. Delay in engagement or disengagement time should be observed.	Don't operate the Brake without adjusting/resetting the Air gap.
3. Checking the Air gap at regular interval.	Don't operate the brake if specified air gap is not present or the gap is totally closed.
4. Adjust the air gap to rated air gap as per table 3.2.	Don't let armature plate to be uneven i.e. one side totally closed while another open beyond permissible limit.
5. Required DC supply voltage to be checked.	Don't operate the brake once DC supply is +10% or -10% of the rated voltage
Check the linear part of the brakes since they should run dry. Use only sealed Ball Bearing	Don't use any oil, grease, lubricant or any foreign material for lubrication. Friction surface should be free from all the above substances.

Notes

Regd. Office:

1 Floor, Sita Mauli, above Bank of Maharashtra, Madanlal Dhingra Road Panch Pakhadi, Thane (West), 400 602, INDIA

Tel: +91 (0) 22 2540 5490/2545 2244/2541 5913/2541 5914

Fax: +91 (0) 22 2545 2233 Email: mktg@emco-dynatorq.in

Unit I:

Shivam Industrial Estate, Bldg. No. 3, Gala No. 12A & 12B Tungareshwar Phata Road, Sativali, Vasai (E), Thane – 401 208

Tel: +91 (0) 250 2480 489/2480 490

Fax: +91 (0) 250 2481 086 Email: vasai@emco-dynatorq.in

Unit II:

1002 - 1003, GIDC, Waghodia, Dist. Baroda 391 760, Gujarat

Tel: +91 (0) 2668 262186 / 263089 / 262187

Telefax: +91 (0) 2668 262180 Email: dynatorg@gmail.com

Unit III:

Gala No. 6A & 8, Kedarnath Bldg. Tungareshwar Indl. Estate, Sativali, Vasai (E)

Tel: +91 (0) 250 2480 178 / 2480 921

Unit IV:

Plot No. 1426, GIDC, Waghodia, Dist. Baroda 391 760, Gujarat

Tel: +91 (0) 2668 290761

Website:-www.emco-dyanatorq.in

